An Inequality between Compositions of Weighted Arithmetic and Geometric Means
نویسنده
چکیده
Let P denote the collection of positive sequences defined on N. Fix w ∈ P. Let s, t, respectively, be the sequences of partial sums of the infinite series ∑ wk and ∑ sk, respectively. Given x ∈ P, define the sequences A(x) and G(x) of weighted arithmetic and geometric means of x by An(x) = n ∑ k=1 wk sn xk, Gn(x) = n ∏ k=1 x wk/sn k , n = 1, 2, . . . Under the assumption that log t is concave, it is proved that A(G(x)) ≤ G(A(x)) for all x ∈ P, with equality if and only if x is a constant sequence.
منابع مشابه
. C A ] 2 4 Se p 20 10 A Note on the Weighted Harmonic - Geometric - Arithmetic Means Inequalities ∗
In this note, we derive non trivial sharp bounds related to the weighted harmonic-geometric-arithmetic means inequalities, when two out of the three terms are known. As application, we give an explicit bound for the trace of the inverse of a symmetric positive definite matrix and an inequality related to the coefficients of polynomials with positive roots.
متن کاملA Note on the Weighted Harmonic–geometric–arithmetic Means Inequalities
In this note, we derive non trivial sharp bounds related to the weighted harmonicgeometric-arithmetic means inequalities, when two out of the three terms are known. As application, we give an explicit bound for the trace of the inverse of a symmetric positive definite matrix and an inequality related to the coefficients of polynomials with positive roots. Mathematics subject classification (201...
متن کاملImproved logarithmic-geometric mean inequality and its application
In this short note, we present a refinement of the logarithmic-geometric mean inequality. As an application of our result, we obtain an operator inequality associated with geometric and logarithmic means.
متن کاملA remark on the means of the number of divisors
We obtain the asymptotic expansion of the sequence with general term $frac{A_n}{G_n}$, where $A_n$ and $G_n$ are the arithmetic and geometric means of the numbers $d(1),d(2),dots,d(n)$, with $d(n)$ denoting the number of positive divisors of $n$. Also, we obtain some explicit bounds concerning $G_n$ and $frac{A_n}{G_n}$.
متن کاملA Relationship between Subpermanents and the Arithmetic-Geometric Mean Inequality
Using the arithmetic-geometric mean inequality, we give bounds for k-subpermanents of nonnegative n × n matrices F. In the case k = n, we exhibit an n 2-set S whose arithmetic and geometric means constitute upper and lower bounds for per(F)/n!. We offer sharpened versions of these bounds when F has zero-valued entries.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006