An Inequality between Compositions of Weighted Arithmetic and Geometric Means

نویسنده

  • FINBARR HOLLAND
چکیده

Let P denote the collection of positive sequences defined on N. Fix w ∈ P. Let s, t, respectively, be the sequences of partial sums of the infinite series ∑ wk and ∑ sk, respectively. Given x ∈ P, define the sequences A(x) and G(x) of weighted arithmetic and geometric means of x by An(x) = n ∑ k=1 wk sn xk, Gn(x) = n ∏ k=1 x wk/sn k , n = 1, 2, . . . Under the assumption that log t is concave, it is proved that A(G(x)) ≤ G(A(x)) for all x ∈ P, with equality if and only if x is a constant sequence.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

. C A ] 2 4 Se p 20 10 A Note on the Weighted Harmonic - Geometric - Arithmetic Means Inequalities ∗

In this note, we derive non trivial sharp bounds related to the weighted harmonic-geometric-arithmetic means inequalities, when two out of the three terms are known. As application, we give an explicit bound for the trace of the inverse of a symmetric positive definite matrix and an inequality related to the coefficients of polynomials with positive roots.

متن کامل

A Note on the Weighted Harmonic–geometric–arithmetic Means Inequalities

In this note, we derive non trivial sharp bounds related to the weighted harmonicgeometric-arithmetic means inequalities, when two out of the three terms are known. As application, we give an explicit bound for the trace of the inverse of a symmetric positive definite matrix and an inequality related to the coefficients of polynomials with positive roots. Mathematics subject classification (201...

متن کامل

Improved logarithmic-geometric mean inequality and its application

In this short note, we present a refinement of the logarithmic-geometric mean inequality. As an application of our result, we obtain an operator inequality associated with geometric and logarithmic means.

متن کامل

A remark on the means of the number of divisors

‎We obtain the asymptotic expansion of the sequence with general term $frac{A_n}{G_n}$‎, ‎where $A_n$ and $G_n$ are the arithmetic and geometric means of the numbers $d(1),d(2),dots,d(n)$‎, ‎with $d(n)$ denoting the number of positive divisors of $n$‎. ‎Also‎, ‎we obtain some explicit bounds concerning $G_n$ and $frac{A_n}{G_n}$.

متن کامل

A Relationship between Subpermanents and the Arithmetic-Geometric Mean Inequality

Using the arithmetic-geometric mean inequality, we give bounds for k-subpermanents of nonnegative n × n matrices F. In the case k = n, we exhibit an n 2-set S whose arithmetic and geometric means constitute upper and lower bounds for per(F)/n!. We offer sharpened versions of these bounds when F has zero-valued entries.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006